首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4439篇
  免费   163篇
  国内免费   41篇
化学   2806篇
晶体学   28篇
力学   111篇
数学   970篇
物理学   728篇
  2023年   30篇
  2022年   38篇
  2021年   111篇
  2020年   100篇
  2019年   115篇
  2018年   100篇
  2017年   72篇
  2016年   153篇
  2015年   116篇
  2014年   136篇
  2013年   252篇
  2012年   264篇
  2011年   309篇
  2010年   198篇
  2009年   170篇
  2008年   286篇
  2007年   218篇
  2006年   228篇
  2005年   232篇
  2004年   215篇
  2003年   145篇
  2002年   153篇
  2001年   53篇
  2000年   51篇
  1999年   63篇
  1998年   49篇
  1997年   30篇
  1996年   66篇
  1995年   38篇
  1994年   33篇
  1993年   30篇
  1992年   28篇
  1991年   29篇
  1990年   13篇
  1989年   15篇
  1988年   16篇
  1987年   21篇
  1986年   19篇
  1985年   21篇
  1984年   28篇
  1982年   33篇
  1981年   29篇
  1980年   12篇
  1979年   21篇
  1978年   31篇
  1977年   19篇
  1976年   24篇
  1975年   11篇
  1974年   16篇
  1973年   14篇
排序方式: 共有4643条查询结果,搜索用时 31 毫秒
101.
Nickel can be separated from Zn, Co, Cu(II), Mn(II), Fe(III), U(VI) and other elements which readily form chloro complex ions, by eluting them with 0.5 M HCl/93% acetone from AG50W-X4 resin. Nickel is then eluted selectivity with 0.5 M HCl/95% acetone containing 0.1 M dimethylglyoxime, while the alkali and alkaline-earth elements, Al, Ti(IV), Sc, Y, La, lanthanides, Zr, Hf and Th are still retained. Separations are sharp and quantitative.  相似文献   
102.
Perchlorate is a compound of increasing concern as an environmental contaminant and is being regulated at increasingly stringent levels. Reliable methods are needed to consistently analyze perchlorate at low concentration levels. This research investigates the use of solid-phase extraction cartridges as an alternative to large-volume injection loops to achieve low-level (microg/L level) perchlorate quantitation. The method involves commercially available strong anion exchange (SAX) cartridges. Water samples are filtered (100 to 1000 mL) using the cartridge, which removes the perchlorate from the solution by anion exchange. Then, after the desired volume is filtered, the perchlorate is extracted using 4 mL of 1% NaOH. In addition, a cleanup method is developed to remove competing anions (chloride, sulfate, and carbonate) that are often found in environmental samples. Analyses are performed with an ion chromatograph using a 10-microL injection loop, yielding a perchlorate method detection limit (MDL) of 210 microg/L. One-liter volumes of a 2-microg/L perchlorate spiked deionized water solution are filtered with SAX SPE. Following extraction and analysis, an MDL of 0.82 microg/L is obtained, comparable to that found for 1-mL injection loop systems (reported as low as 0.53 microg/L). MDL studies are then conducted on perchlorate-amended groundwater (solution concentration of 70 microg/L) and surface water (solution concentration of 10 microg/L) using a filtration volume of 200 mL. The MDLs are 6.7 microg/L for the groundwater and 2.4 microg/L for the surface water.  相似文献   
103.
Semi-empirical model potential calculations have been performed for bound and continuum properties of Li? and Na?. The calculated electron affinities of the 2s21S state of Li? and the 3s21S and 3p23Pe states of Na? are in agreement with the calculations of Norcross and with experimental data. Positions of possible autoionizing states are calculated using projection and root stabilization methods. The Stieltjes imaging method of Langhoff is employed to compute the photodetachment cross sections of Li? and Na? and the results are in excellent agreement with the close-coupling calculations of Moores and Norcross. A comparison of variational and numerical results for the coupled time-dependent Hartree-Fock photoionization of helium shows that good Stieltjes imaging results can be obtained with a very small basis set for the variational calculation. The continuous photoemission profile for the 3p23Pe state of Na? is also obtained.  相似文献   
104.
The one pot reaction of salicylaldehyde 1, beta-amino alcohols 2a-2c, and di-n-butyltin(IV) oxide 3a or diphenyltin(IV) oxide 3b produced five diorganotin(IV) compounds, 4a-4c, 5a, and 5c, in good yields. All compounds were characterized by IR, (1)H, (13)C, and (119)Sn NMR spectroscopy, and elemental analysis; furthermore, compounds 4b, 4c, 5a, and 5c were characterized by X-ray diffraction analysis. After the structural characterization, all of the compounds were tested in vitro against Bacillus subtilis (Gram-positive, strain ATCC 6633), Escherichia coli (Gram-negative, strain DH5alpha), Pseudomonas aeruginosa (Gram-negative, strain BH3), Desulfovibrio longus (strain DSM 6739), and Desulfomicrobium aspheronum (strain DSM 5918) to assess their antimicrobial activity. Compounds 4 and 5 demonstrated a wide range of bactericidal activities against the tested aerobic (one Gram-positive and two Gram-negative subtypes) and anaerobic bacteria (two sulfate-reducing bacteria, SRB). Compound 5 had better bactericidal performances than compound 4. For all of the compounds, the acute toxicity was measured using luminescent bacteria toxicity (LBT-Microtox) tests to track their further environmental impact. According to these results and in order to fulfill environmental regulations, the toxicity of the compounds studied herein can be modulated through the proper selection of the disubstituted tin(IV) moiety.  相似文献   
105.
Deep UV resonance Raman spectroscopy was used for characterizing ligand-metal ion complexes. The obtained results demonstrated a strong intrinsic sensitivity and selectivity of a Raman spectroscopic signature of a bicyclic diamide, a novel chelating agent for lanthanides and actinides (Lumetta, G. J.; Rapko, B. M.; Garza, P. A.; Hay, B. P.; Gilbertson, R. D.; Weakley, T. J. R.; Hutchison, J. E. J. Am. Chem. Soc. 2002, 124, 5644). Molecular modeling, which included structure optimization and calculation of Raman frequencies and resonance intensities, allowed for assigning all strong Raman bands of the bicyclic diamide as well as predicting the band shifts observed because of complex formation with metal ions. A comparative analysis of Raman spectra and the results of the molecular modeling could be used for elucidating the structure of complexes in solution.  相似文献   
106.
Surfactant solutions and porous substrates: spreading and imbibition   总被引:1,自引:0,他引:1  
In Section 1, spreading of small liquid drops over thin dry porous layers is investigated from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. Drop motion over a porous layer is caused by an interplay of two processes: (a) the spreading of the drop over already saturated parts of the porous layer, which results in an expanding of the drop base, and (b) the imbibition of the liquid from the drop into the porous substrate, which results in a shrinkage of the drop base and an expanding of the wetted region inside the porous layer. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations has been derived to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. This system includes two parameters, one accounts for the effective lubrication coefficient of the liquid over the wetted porous substrate, and the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters are determined. Experiments were carried out on the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer were monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactory for the experimental data. According to theory predictions [1]: (i) the dynamic contact angle dependence on the same dimensionless time as before should be a universal function, and (ii) the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in the system under investigation. These conclusions again are in good agreement with experimental observations [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. In Section 2, experimental investigations are reviewed on the spreading of small drops of aqueous SDS solutions over dry thin porous substrates (nitrocellulose membranes) in the case of partial wetting [S. Zhdanov, V. Starov, V. Sobolev, M. Velarde, Spreading of aqueous SDS solutions over nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]. The time evolution was monitored of the radii of both the drop base and the wetted area inside the porous substrate. The total duration of the spreading process was subdivided into three stages-the first stage: the drop base expands until the maximum value of the drop base is reached; the contact angle rapidly decreases during this stage; the second stage: the radius of the drop base remains constant and the contact angle decreases linearly with time; the third stage: the drop base shrinks and the contact angle remains constant. The wetted area inside the porous substrate expends during the whole spreading process. Appropriate scales were used with a plot of the dimensionless radii of the drop base, of the wetted area inside the porous substrate, and the dynamic contact angle on the dimensionless time. Experimental data showed [S. Zhdanov, V. Starov, V. Sobolev, M. Velarde, Spreading of aqueous SDS solutions over nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]: the overall time of the spreading of drops of SDS solution over dry thin porous substrates decreases with the increase of surfactant concentration; the difference between advancing and hydrodynamic receding contact angles decreases with the surfactant concentration increase; the constancy of the contact angle during the third stage of spreading has nothing to do with the hysteresis of contact angle, but determined by the hydrodynamic reasons. It is shown using independent spreading experiments of the same drops on nonporous nitrocellulose substrate that the static receding contact angle is equal to zero, which supports the conclusion on the hydrodynamic nature of the hydrodynamic receding contact angle on porous substrates. In Section 3, a theory is developed to describe a spontaneous imbibition of surfactant solutions into hydrophobic capillaries, which takes into account the micelle disintegration and the concentration decreasing close to the moving meniscus as a result of adsorption, as well as the surface diffusion of surfactant molecules [N.V. Churaev, G.A. Martynov, V.M. Starov, Z.M. Zorin, Colloid Polym. Sci. 259 (1981) 747]. The theory predictions are in good agreement with the experimental investigations on the spontaneous imbibition of the nonionic aqueous surfactant solution, Syntamide-5, into hydrophobized quartz capillaries. A theory of the spontaneous capillary rise of surfactant solutions in hydrophobic capillaries is presented, which connects the experimental observations with the adsorption of surfactant molecules in front of the moving meniscus on the bare hydrophobic interface [V.J. Starov, Colloid Interface Sci. 270 (2003)]. In Section 4, capillary imbibition of aqueous surfactant solutions into dry porous substrates is investigated from both theoretical and experimental points of view in the case of partial wetting [V. Straov, S. Zhdanov, M. Velarde, J. Colloid Interface Sci. 273 (2004) 589]. Cylindrical capillaries are used as a model of porous media for theoretical treatment of the problem. It is shown that if an averaged pore size of the porous medium is below a critical value, then the permeability of the porous medium is not influenced by the presence of surfactants at any concentration: the imbibition front moves exactly in the same way as in the case of the imbibition of the pure water. The critical radius is determined by the adsorption of the surfactant molecules on the inner surface of the pores. If an averaged pore size is bigger than the critical value, then the permeability increases with surfactant concentration. These theoretical conclusions are in agreement with experimental observations. In Section 5, the spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, M.G. Velarde, J. Colloid Interface Sci. 227 (2000) 185]. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilise the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by experimental observations. In Section 6, the process of the spontaneous spreading of a droplet of a polar liquid over solid substrate is analyzed in the case when amphiphilic molecules (or their amphiphilic fragments) of the substrate surface layer are capable of overturning, resulting in a partial hydrophilisation of the surface [V.M. Starov, V.M. Rudoy, V.I. Ivanov, Colloid J. (Russian Academy of Sciences English Transaction) 61 (3) (1999) 374]. Such a situation may take place, for example, during contact of an aqueous droplet with the surface of a polymer whose macromolecules have hydrophilic side groups capable of rotating around the backbone and during the wetting of polymers containing surface-active additives or Langmuir-Blodgett films composed of amphiphilic molecules. It was shown that droplet spreading is possible only if the lateral interaction between neighbouring amphiphilic molecules (or groups) takes place. This interaction results in the tangential transfer of "the overturning state" to some distance in front of the advancing three-phase contact line making it partially hydrophilic. The quantitative theory describing the kinetics of droplet spreading is developed with allowance for this mechanism of self-organization of the surface layer of a substrate in the contact with a droplet.  相似文献   
107.
[reaction: see text] A new Prins-type cyclization between homopropargylic alcohol and aldehydes in the presence of FeX(3) to obtain 2-alkyl-4-halo-5,6-dihydro-2H-pyrans in good yield is described. Osmium-catalyzed cis dihydroxylation provided direct access to trans-2-alkyl-3-hydroxy-tetrahydro-pyran-4-ones. Anhydrous ferric halides are also shown to be excellent catalysts for the standard Prins cyclization using homoallylic alcohol. Isolation of an intermediate acetal provides substantiation of a proposed mechanism.  相似文献   
108.
The stability and structure of non-covalent complexes of various peptides contatining basic amino acid residues (Arg, Lys) with metalloporphyrins were studied in a quadrupole ion trap mass spectrometer. The complexes of heme and three other metalloporphyrins with a variety of basic peptides and model systems were formed via electrospray ionization (ESI) and their stability was probed by energy-variable collision-induced dissociation (CID). A linear dependence for basic peptides and model compounds/metalloporphyrin complexes was observed in the plots of stability versus degrees of freedom and was used to evaluate relative bond strength. These results were then compared with previous data obtained for complexes of metalloporphyrins with His-containing peptides and peptides containing no basic amino acids. The binding strengths of Lys-containing peptide complexes in the gas phase was found to be almost as strong as that of Arg-containing complexes. Both systems showed stronger binding than His- containing peptides studied previously. To probe the structure of Arg and Lys non-covalent complexes (charge solvation versus salt bridges), two techniques, CID and ionmolecule reactions, were used. CID experiments indicate that the gas-phase complexes are most likely formed by charge solvation of the central metal ion in the metalloporphyrin by basic side chains of Arg or Lys. Results from the ionmolecule reaction studies are consistent with the charge solvation structure as well.  相似文献   
109.
An investigation of heparinase immobilization   总被引:1,自引:0,他引:1  
A systematic investigation of the parameters that affect the efficiency of immobilizing heparinase onto cyanogen bromide activated crosslinked 8% agarose beads was conducted. Two experimental measures, the “fraction bound” and the “fraction retained,” were used to monitor the coupling efficiency. The fraction bound is the portion of the total initial enzyme that is bound to the agarose gel. The fraction retained is the fraction of bound enzyme that is active. The product of the two measures indicates the coupling efficiency. The activity of the immobilized heparinase was measured under conditions free of both internal and external mass transfer limitations, and thus, the fraction retained represents the true immobilized enzyme activity. Increasing the degree of activation of the beads results in an increase in the fraction bound, the fraction retained, and consequently, the coupling efficiency. As the ratio of enzyme solution to gel volume increases from 1.5 to 2.2, the fraction bound remains constant but the fraction retained decreases (heparinase concentration; 0.15 mg/mL and degree of activation; 9.5 μmol of cyanate esters/g of gel). At volume ratios greater than 2.2, both the fraction bound and the fraction retained decline continuously. Changing the heparinase concentration in the coupling solution changes the coupling efficiency in a manner similar to that of the volume ratio change. When heparin is added during the coupling process, the fraction bound declines as the heparin concentration increases, whereas the fraction retained increases up to a heparin concentration of 12 mg/mL and decreases thereafter. When arginine, lysine, and glycine are used to block the unreacted cyanate ester groups after the coupling process, the immobilized heparinase shows different pH optima of 6.5, 6.9, and 7.2, respectively. Based upon these findings, a protocol to optimize heparinase immobilization is developed.  相似文献   
110.
β-Pinene was polymerized with H2O/BCl3 (protic) and p-dicumyl chloride and sym-tricumyl chloride (nonprotic) inifer systems in CH2Cl2 or CH2Cl2/n-C6H14 solvents from ?10 to ?70°C. The effect of solvent polarity, temperature, and monomer and inifer concentration on conversions and molecular weights was investigated. Low conversions and molecular weights, M?n = 1300–2500, obtained under these conditions suggest rapid termination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号